Place Value and Number
 2-digit place value

Objectives

Day 1
Know what each digit means in a 2-digit number.
Know what each digit means in a 2-digit number.
Day 2
Know what each digit means in a 2-digit number. Locate numbers on a beaded line.
Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 3
Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of 10.
Round 2-digit numbers to the nearest multiple of 10.

Place Value and Number
 2-digit place value

Short Mental Workouts

Day 1
Count in 1s and 10s to 100
Day 2
Recite numbers to 100
Day 3
Place value

Place Value and Number

2-digit place value

Short Mental Workout
Count in 1s and 10s to 100

Place Value and Number

2-digit place value

Short Mental Workout
Recite numbers to 100

1-100 number grid

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Place Value and Number

2-digit place value

Short Mental Workout
Place value

Place Value and Number
 2-digit place value

Objectives

Day 1
Know what each digit means in a 2-digit number. Know what each digit means in a 2-digit number.

Day 1: Know what each digit means in a 2-digit number. Know what each digit means in a 2 -digit number.

There is 23 p.
The 2 stands for the number of 10 s and the 3 stands for the number of 1 s .

Day 1: Know what each digit means in a 2-digit number. Know what each digit means in a $\mathbf{2}$-digit number.

Day 1: Know what each digit means in a 2-digit number. Know what each digit means in a $\mathbf{2}$-digit number.

Day 1: Know what each digit means in a 2-digit number. Know what each digit means in a 2 -digit number.

Let's count the coins to check...

Day 1: Know what each digit means in a 2-digit number. Know what each digit means in a 2-digit number.

\square

Day 1: Know what each digit means in a 2-digit number. Know what each digit means in a 2 -digit number.

Place value

Sheet 1

Challenge
Draw an amount between 60p and 70p.

Challenge

Place value
Sheet 2

Write the number below each picture.

Challenge

Draw 10s and 1s to show a 2-digit number smaller than any on this page. Draw 10s and 1s to show a 2-digit number bigger than any on this page.

Place Value and Number
 2-digit place value

Objectives

Day 2
Know what each digit means in a 2-digit number. Locate numbers on a beaded line.
Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 2: Know what each digit means in a 2-digit number. Locate numbers on a beaded line. Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Make 45 using your place value cards.

Day 2: Know what each digit means in a 2-digit number. Locate numbers on a beaded line. Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 2: Know what each digit means in a 2-digit number. Locate numbers on a beaded line. Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

The 2 tells us how many groups of 10 there are.

> The 3 tells us how many 1s there are.

Day 2: Know what each digit means in a 2-digit number. Locate numbers on a beaded line. Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 2: Know what each digit means in a 2-digit number. Locate numbers on a beaded line. Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 2: Know what each digit means in a 2-digit number. Locate numbers on a beaded line. Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 2: Know what each digit means in a 2-digit number. Locate numbers on a beaded line. Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

40

Day 2: Know what each digit means in a 2-digit number. Locate numbers on a beaded line. Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 2: Know what each digit means in a 2-digit number. Locate numbers on a beaded line. Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 2: Know what each digit means in a 2-digit number. Locate numbers on a beaded line. Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 2: Know what each digit means in a 2-digit number. Locate numbers on a beaded line. Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Find the numbers

Sheet 1

0	10	20	30	40	50	60	70	80	90	100

Mark these numbers on the line:
$\begin{array}{llllllllll}23 & 58 & 75 & 12 & 61 & 83 & 88 & 24 & 32 & 47\end{array}$

Day 2: Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 2: Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 2: Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

$$
54>29 \quad 29<54
$$

Finding inequalities

Mark the numbers on the landmarked line and complete the table.

Suggest some more of your own for the last four rows.

Number to mark on beaded line	My number is more than $>$	My number is less than $<$	My number lies between these multiples of 10:
62	$62>52$	$62<65$	60 and 70
57			
14			
81			
45			
26			
73			
39			
98			

Place Value and Number
 2-digit place value

Objectives

Day 3

Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of 10 .
Round 2-digit numbers to the nearest multiple of 10.

Day 3: Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of 10 . Round $\mathbf{2}$-digit numbers to the nearest multiple of $\mathbf{1 0}$.

Day 3: Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of $\mathbf{1 0}$. Round $\mathbf{2 - d i g i t ~ n u m b e r s ~ t o ~ t h e ~ n e a r e s t ~ m u l t i p l e ~ o f ~} \mathbf{1 0}$.

${ }^{\circ}$

To round 68 to the nearest 10 we round it 'up' to 70 because that's the closest multiple of 10 .

Day 3: Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of 10 . Round $\mathbf{2}$-digit numbers to the nearest multiple of $\mathbf{1 0}$.

${ }^{\circ} \mathrm{O}$

Day 3: Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of 10 . Round $\mathbf{2 - d i g i t ~ n u m b e r s ~ t o ~ t h e ~ n e a r e s t ~ m u l t i p l e ~ o f ~} 10$.

To round 98 to the nearest 10 we round it up to 100 because that's the closest multiple of 10 .

Day 3: Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of 10 . Round 2-digit numbers to the nearest multiple of 10. 45

0

Talk to your partner. What is 45 rounded to the nearest 10 ?

So, 45 is in the middle of 40 and 50 . We need a rule for rounding numbers that are half-way between the target multiples.

We always round up. 45 rounded to the nearest 10 is 50 .

Square order

Children place four digit cards on a grid to create 2-digit numbers and order them. They move the digits around to make smaller/larger numbers.

Conjecture: It is possible to arrange four digit cards on a grid so as to create the four smallest 2-digit numbers possible and then the four largest 2-digit numbers possible.

What to do:
Children work individually or in pairs
Children will need a set of 1 to 9 digit cards, Y2s need a 0 card for the challenge

1. Draw a 2 by 2 grid.
2. Choose four cards to place on the grid, e.g.

2	5
6	3

3. Read across the grid and write down the two 2-digit numbers, e.g. 25 and 63.
4. Read down the grid and write down the two 2-digit numbers, e.g. 26 and 53.
5. Write these numbers in order, smallest to largest, e.g. 25, 26, 53, 63.

Skills practised:

- Comparing and ordering 2-digit numbers
- Using knowledge about the value of each digit in a 2-digit number

6. Rearrange the four cards on the grid so as to get:

- smallest possible set of numbers, including the smallest number possible at the start of the sequence
- largest possible set of numbers, including the largest number possible at the end of the sequence

Can you DEMONSTRATE that your two sequences are the very smallest and the very largest possible?
Y2 CHALLENGE: Swap one of your cards with 0 . If 0 is the first part of a 2-digit number, e.g. O3, read this as 3 .

What is the smallest possible sequence of numbers now? Where is the best place to put 0 ? Does having a ' 0 ' in the pack affect the largest possible sequence or is it still the same as it was before?

Aim:

- To investigate if different possible answers can be found

Minimum number of calculations expected

- To realise the effect of placing digits in different places

N/A

Investigation: Child Sheet

Y2 Challenge

Swap one of your cards with 0 . If 0 is the first part of a 2 -digit number, e.g. 03 , read this as 3 . What is the smallest possible sequence of numbers now? Where is the best place to put 0 ? Does having a ' 0 ' in the pack affect the largest possible sequence or is it still the same as it was before?

Rounding prices

Sheet 4
What multiple of 10 p would you round each price to?

Book shop
33p
14p
56p
32p
29p
45p

Supermarket

53p
44 p
58p
72p
99p
65p
81p
55p
97p

Challenge

Three items cost 24 p, $13 p$ and 34 p.
Round them each to the nearest 10 p then add the rounded numbers.
What is the difference between the total of the rounded prices and the total of the actual prices?

Day 3: Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of 10 .

27

Show children a tag with 27 on it and ask which two whole tens it goes between on the bead bar.

Day 3: Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of 10 .

 $20 \quad 2730$

(C) hamilton-trust.org.uk

Day 3: Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of 10 .

53

Show children a tag with 53 on it and ask which two whole tens it goes between on the bead bar.

Day 3: Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of 10 .

Square order

Children place four digit cards on a grid to create 2-digit numbers and order them. They move the digits around to make smaller/larger numbers.

Conjecture: It is possible to arrange four digit cards on a grid so as to create the four smallest 2-digit numbers possible and then the four largest 2-digit numbers possible.

What to do:
Children work individually or in pairs
Children will need a set of 1 to 9 digit cards, Y2s need a 0 card for the challenge

1. Draw a 2 by 2 grid.
2. Choose four cards to place on the grid, e.g.

2	5
6	3

3. Read across the grid and write down the two 2-digit numbers, e.g. 25 and 63.
4. Read down the grid and write down the two 2-digit numbers, e.g. 26 and 53.
5. Write these numbers in order, smallest to largest, e.g. 25, 26, 53, 63.

Skills practised:

- Comparing and ordering 2-digit numbers
- Using knowledge about the value of each digit in a 2-digit number

6. Rearrange the four cards on the grid so as to get:

- smallest possible set of numbers, including the smallest number possible at the start of the sequence
- largest possible set of numbers, including the largest number possible at the end of the sequence

Can you DEMONSTRATE that your two sequences are the very smallest and the very largest possible?
Y2 CHALLENGE: Swap one of your cards with 0 . If 0 is the first part of a 2-digit number, e.g. O3, read this as 3 .

What is the smallest possible sequence of numbers now? Where is the best place to put 0 ? Does having a ' 0 ' in the pack affect the largest possible sequence or is it still the same as it was before?

Aim:

- To investigate if different possible answers can be found

Minimum number of calculations expected

- To realise the effect of placing digits in different places

N/A

Investigation: Child Sheet

Y2 Challenge

Swap one of your cards with 0 . If 0 is the first part of a 2 -digit number, e.g. 03 , read this as 3 . What is the smallest possible sequence of numbers now? Where is the best place to put 0 ? Does having a ' 0 ' in the pack affect the largest possible sequence or is it still the same as it was before?

In between numbers

```
Sheet }
```

Find the two 10 s numbers on each beaded line. Write them in the correct place.
Mark two numbers between them.

 00 and 70 .

80 and 90.
 0

40 and 50.

In-between numbers

Sheet 3

Find the two numbers on each beaded line. Write them in the correct place.
Mark two numbers between them.

55 and 65.

0 (100	

88 and 98.

36 and 46.

Place Value and Number

2-digit place value

Well Done! You've completed this unit.

Objectives

Day 1
Know what each digit means in a 2-digit number.
Know what each digit means in a 2-digit number.
Day 2
Know what each digit means in a 2-digit number. Locate numbers on a beaded line.
Compare numbers using the symbols < and >. Locate numbers on a landmarked line.

Day 3
Place 2-digit numbers on a beaded line. Suggest a number between neighbouring multiples of 10.
Round 2-digit numbers to the nearest multiple of 10.

Problem solving and reasoning questions

Year 1

Use place value cards to create these numbers:
46728118

Circle the number in each pair with the most 10s.
(a) 34 and 51
(b) 14 and 41
(c) 59 and 61
(d) 80 and 28

How many 10ps and 1 ps in each amount?

$$
\begin{array}{lll}
\text { 10ps 1ps } \\
3 & 6 & =36 p \\
4 & 8 & =\square p \\
\square & 2 & =52 p \\
7 & \square & =70 p
\end{array}
$$

Problem solving and reasoning questions

Year 2

Fill in the missing numbers.

$$
49=9+\square \quad \square-7=30 \quad 90=94-\square
$$

Write the missing number or symbol: < or >.
$87 \square 78 \quad 73<\square \quad 14 \square 41 \quad 39 \square 62$
$19>\square>14$

Round these numbers/ amounts to the nearest tens number:
$\begin{array}{lllllll}26 & 37 & 61 & 75 & 94 & 86 & 55\end{array}$

Write all the numbers that round to 60 as the nearest 10 .

Problem solving and reasoning answers

Year 1

Use place value cards to create these numbers:
46728118 Check children use the correct 10s and 1s cards, e.g. 40 and 6 for 46 , not 4 and 6 .

Circle the number in each pair with the most 10s.
(a) 34 and 51
(b) 14 and 41
(c) 59 and 61
(d) 80 and 28

How many 10ps and 1 ps in each amount?

10ps 1 ps		
3	6	$=36 p$
4	8	$=48 p$
5	2	$=52 p$
7	0	$=70 p$

Check with real 10p and $1 p$ coins if children are struggling.

Problem solving and reasoning answers

Year 2

Fill in the missing numbers.
$49=9+40 \quad 37-7=30 \quad 90=94-4$

Write the missing number or symbol: <or >.
$87>78 \quad 73$ < Any number greater than 73
$14<41 \quad 39<62 \quad 19>15,16,17$ or $18>14$

Round these numbers/ amounts to the nearest tens number:

26	30	37	40	61	60	75	80
94	90	86	90	55	60		

Write all the numbers that round to 60 as the nearest 10.
$55,56,57,58,59,61,62,63,64$ There are 9 numbers.
Some children may mistakenly include 65 which rounds to 70 .

